This websites uses cookies, by continuing to browse the site you are agreeing to our use of cookies. View our privacy policy.


Novel Dielectric Barrier Discharge Explosive Detection Research Published

A cooperation between the University of Liverpool and Mass Spec Analytical examines how using a DBD ionisation source for mass spectrometry can quickly detect explosives from a wide range of surfaces

Carl Fletcher, a University of Liverpool Student, working with Mass Spec Analytical scientists and developers, have published a paper examining explosive detection using a novel dielectric barrier discharge ionisation source for mass spectrometry. 

The detection of explosives is of great importance, as is the need for sensitive, reliable techniques that require little or no sample preparation and short run times for high throughput analysis. In this work, a novel ionisation source is presented based on a dielectric barrier discharge (DBD). This not only affects desorption and ionisation but also forms an ionic wind, providing mass transportation of ions towards the mass spectrometer. Furthermore, the design incorporates 2 asymmetric alumina sheets, each containing 3 DBDs, so that a large surface area can be analysed.

The DBD operates in ambient air, overcoming the limitation of other plasma-based techniques which typically analyse smaller surface areas and require solvents or gases. A range of explosives across 4 different functional groups was analysed using the DBD with low limits of detection for cyclotrimethylene trinitramine (RDX) (100 pg), pentaerythritol trinitrate (PETN) (100 pg), hexamethylene triperoxide diamide (HMTD) (1 ng), and trinitrotoluene (TNT) (5 ng).

Detection was achieved without any sample preparation or the addition of reagents to facilitate adduct formation.

More information regarding the publication can be found here.

Although the focus on this research is explosives detection, the DBD ion source shows great potential in other research and application areas.

This project is a collaboration between the University of Liverpool (PhD funded by the Engineering and Physical Sciences Research Council, EPSRC) AND Mass Spec Analytical Ltd., and is funded under the Innovative Research Call 2016 for Explosives and Weapons Detection. This is a Cross-Government programme sponsored by a number of Departments and Agencies under the UK Governments CONTEST strategy in partnership with the US Department of Homeland Security, Science and Technology Directorate. 

Contact Mass Spec Analytical on  +44(0)117 428 5787